Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Michael Bolte,* Alexander Degen and Stephan Rühl

Institut für Organische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.115$
Data-to-parameter ratio $=17.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,2'-[(3-Hydroxyphenyl)methylene]bis(3-hydroxy-5,5-dimethyl-2-cyclohexen-1-one) hydrate

The title compound is a bis-dimedone derivative which crystallizes as a monohydrate, $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$. Its crystal packing is stabilized by hydrogen bonds involving water.

Received 16 January 2001
Accepted 22 January 2001
Online 30 January 2001

Comment

Some years ago, we accidentally encountered the twinned crystal structures of two similar compounds bearing the bisdimedone moiety: bis(2-hydroxy-4,4-dimethyl-6-oxo-1-cyclohexenyl)phenylmethane (Bolte et al., 1997) and 2,2'-methyl-enebis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one) (Bolte \& Scholtyssik, 1997). Since these compounds can easily be prepared (Hünig et al., 1979), we have decided to synthesize various derivatives with the objective to find out if these are also twinned (Bolte et al., 2001). We hoped to find more twinned crystal structures in order to understand why some of these simple compounds containing the common bis-dimedone skeleton are twinned. Unfortunately, none of these, including the title compound, (I), turned out to be twinned.

- $\mathrm{H}_{2} \mathrm{O}$

The two cyclohexenone rings display envelope conformations with C14 and C24 deviating by 0.644 (2) and 0.653 (2) A, respectively, from the plane of the remaining five ring atoms. Both apices are extended towards the phenyl ring. Two strong intramolecular hydrogen bonds are formed connecting the two cyclohexenone rings. The water molecule bridges two different molecules via its H atoms and acts as an acceptor for the H atom of the hydroxyl group of a third molecule.

Experimental

The title compound was synthesized according to Nagarajan \& Shenoy (1992).

Crystal data
$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=402.47$
Monoclinic, $P 2_{1} / n$
$a=8.948$ (1) A
$b=27.128$ (3) \AA
$c=9.045$ (1) A
$\beta=94.30(1)^{\circ}$
$V=2189.4$ (4) \AA^{3}
$Z=4$
$D_{x}=1.221 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192 reflections
$\theta=0-25^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.70 \times 0.65 \times 0.45 \mathrm{~mm}$

Data collection

Siemens CCD three-circle diffract- $\quad R_{\text {int }}=0.028$
ometer
ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\min }=0.941, T_{\max }=0.962$
41555 measured reflections
4836 independent reflections 4088 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.115$
$S=1.01$
4836 reflections
283 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& R_{\text {int }}=0.028 \\
& \theta_{\max }=27.1^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-34 \rightarrow 34 \\
& l=-11 \rightarrow 11 \\
& 486 \text { standard reflections } \\
& \text { frequency: } 1200 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0615 P)^{2}\right. \\
& +0.8381 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.31 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{\mathrm{A}^{-3}} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0036 \text { (10) }
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O12-H12 \cdots O26	$1.09(3)$	$1.49(3)$	$2.560(1)$	$164(2)$
O22-H22 \cdots O16	$1.05(3)$	$1.62(3)$	$2.664(1)$	$171(3)$
O1W-H1W \cdots O16	$0.92(2)$	$1.88(2)$	$2.795(2)$	$172(2)$
O33-H33 \cdots O1W				
O1	$0.92(2)$	$1.76(2)$	$2.684(2)$	$174(2)$
O1W-H2W \cdots O12	$0.97(3)$	$1.90(3)$	$2.870(2)$	$175(2)$
Sym				

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $1+x, y, z$.
All H atoms bonded to C atoms were located by difference Fourier synthesis and refined with fixed individual displacement parameters $\left[U(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)\right.$ or $\left.U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ using a riding model with $\mathrm{C}-\mathrm{H}($ aromatic $)=0.95, \mathrm{C}-\mathrm{H}($ methyl $)=0.98, \mathrm{C}-\mathrm{H}$ (secondary $)$ $=0.99$ or $\mathrm{C}-\mathrm{H}$ (tertiary) $=1.00 \AA$. All hydroxyl H atoms were refined isotropically.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to

Figure 1
Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level.
refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

References

Bolte, M., Degen, A. \& Rühl, S. (1997). Acta Cryst. C53, 340-342.
Bolte, M., Degen, A. \& Rühl, S. (2001). Acta Cryst. C57. Accepted. Bolte, M. \& Scholtyssik, M. (1997). Acta Cryst. C53, 1869-1871.
Hünig, S., Märkl, G. \& Sauer, J. (1979). Integriertes Organisches Praktikum. Weinheim: VCH.
Nagarajan, K. \& Shenoy, S. J. (1992). Indian J. Chem. Ser. B, 31, 73-87.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

